Key Scientific Publications

May-June 2023

Connections between ME/CFS and Long COVID

TYPE Review
PUBLISHED 02 June 2023
DOI 10.3389/fmed.2023.1187163

OPEN ACCESS

EDITED BY

Ramcés Falfán-Valencia, National Institute of Respiratory Diseases-Mexico (INER), Mexico

REVIEWED BY

Jeremy S. Rossman, Research-Aid Networks, United States Johannes Fessler, ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature

Anthony L. Komaroff^{1*} and W. Ian Lipkin²

Considerable similarities in symptoms, few differences

Symptom	ME/CFS	Long COVID	Symptom	ME/CFS	Long COVID
Fatigue	✓	✓	Poor appetite	✓	✓
Post-exertional malaise	✓	✓	Orthostatic intolerance	✓	✓
Headaches	✓	✓	Palpitations	✓	✓
Sleep disorder	✓	✓	Breathlessness	✓	✓
Impaired reasoning	✓	✓	Nausea and diarrhea	✓	✓
Impaired memory	✓	✓	Chills	✓	✓
Impaired attention	✓	✓	Cough	✓	✓
Secondary depression	✓	✓	Decreased smell and taste		✓
Secondary anxiety	✓	✓	Rash and hair loss		✓
Reduced activity	✓	✓	Painful lymph nodes	✓	
Myalgia/arthralgia	✓	✓	Chemical sensitivities	✓	
Muscle weakness	✓	✓	Tinnitus	✓	
Hot and cold spells	✓	✓			

First publication from the RECOVER study: Confirming what we already know

JAMA | Original Investigation

Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection

Tanayott Thaweethai, PhD; Sarah E. Jolley, MD, MS; Elizabeth W. Karlson, MD, MS; Emily B. Levitan, ScD; Bruce Levy, MD; Grace A. McComsey, MD; Lisa McCorkell, MPP; Girish N. Nadkarni, MD, MPH; Sairam Parthasarathy, MD; Upinder Singh, MD; Tiffany A. Walker, MD; Caitlin A. Selvaggi, MS; Daniel J. Shinnick, MS; Carolin C. M. Schulte, PhD; Rachel Atchley-Challenner, PhD; RECOVER Consortium Authors; Leora I. Horwitz, MD; Andrea S. Foulkes, ScD; for the RECOVER Consortium

JAMA. doi:10.1001/jama.2023.8823 Published online May 25, 2023.

Defining PASC

- This study involved nearly 10,000 adults from the RECOVER adult cohort
- Examined 37 symptoms experienced by patients across multiple body areas and organs
- Developed a scoring system to help find out which adults may have Long COVID, comparing people who were COVID-infected with people who were COVID-uninfected
- The 12 symptoms that best differentiated people who were COVID-infected from those who were COVIDuninfected were included in the score
- · Each symptom was assigned a different number of points
- People who had 12 or more points were considered likely to have Long COVID
- Symptoms included: post exertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, heart palpitations, issues with sexual desire or capacity, change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements.

 Fable 2. Model-Selected Symptoms That Define PASC

 and Their Corresponding Scores^a

Symptom	Log odds ratio	Score
Smell/taste	0.776	8
Postexertional malaise	0.674	7
Chronic cough	0.438	4
Brain fog ^b	0.325	3
Thirst	0.255	3
Palpitations	0.238	2
Chest pain ^b	0.233	2
Fatigue ^b	0.148	1
Sexual desire or capacity	0.126	1
Dizzines	0.121	1
Gastrointestinal	0.085	1
Abnormal movements	0.072	1
Hair loss	0.049	0

Symptom Clusters

- Cohort 1 is more characteristic of Sars-CoV-2 specifically (loss of smell and taste)
- Cohorts 3 and 4 are similar to ME/CFS
- Cohort 2 has more pronounced dysautonomia

Fatigue ^a	66	84	94	94	
Fever, sweats, or chills	27	26	28	56	
Postexertional malaisea	55	99	99	94	
Swelling of legs	22	23	18	40	
Chest pain ^a	13	26	14	50	
Palpitations ^a	38	59	44	86	
Hair loss ^a	29	31	21	59	
Skin color changes	10	17	16	38	
Skin pain	5	6	8	18	
Skin rash	12	16	17	32	
Hearing	40	38	40	62	
Vision	19	20	25	51	
Abdominal pain	7	11	12	36	
Dry mouth	29	42	26	55	
Gastrointestinala	42	60	45	88	
Teeth	18	21	17	43	
Thirsta	30	48	20	62	
Back pain	26	31	32	58	
Foot pain	15	19	15	36	
Joint pain	32	33	36	64	
Muscle pain	27	33	34	60	
Weakness	24	33	41	67	
Abnormal movementsa	5	10	8	33	
Brain fog ^a	38	0	100	94	
Dizzinessa	31	56	62	94	
Headache	23	26	37	64	
Smell or taste ^a	100	3	6	53	
Tremor	14	14	15	34	
Anxiety	18	17	30	40	
Depression	17	17	32	44	
Sexual desire or capacity ^a	29	33	35	66	
Sleep disturbance	18	22	32	49	
Chronic cougha	33	43	16	43	
Shortness of breath	22	30	31	58	
Sleep apnea	30	36	32	44	
Throat pain	5	5	7	24	
Bladder	20	25	23	49	
	1 (n=477)	(n=405)	3 (n=587)	4 (n=562)	
	Cluster				

B | Symptom frequencies by PASC status

Trends in **Endocrinology & Metabolism**

Feature Review

Long COVID: pathophysiological factors and abnormalities of coagulation

Simone Turner, ¹ M. Asad Khan, ² David Putrino, ³ Ashley Woodcock, ^{4,5} Douglas B. Kell ^{1,6,7,8,*} and Etheresia Pretorius ^{1,6,9,*}

All long COVID

Non-syndromic long COVID

Mainstream test results that correlate with presenting symptoms:

- -Acute kidney injury
- -Pulmonary fibrosis
- -Cardiac pathology

Intervention

May respond **well** to traditional interventional approaches

Syndromic long COVID

Mainstream test results that do not correlate with presenting symptoms:

- -ME/CFS
- -PESE
- -Dysautonomia
- -Autoimmunity

Pre-existing complex chronic illness worsened by COVID:

- -Pre-COVID ME/CFS
- -Mast cell activation syndrome
- -Dysautonomia
- -Ehlers-Danlos syndrome
- -Lyme disease
- -Hashimoto's disease
- -Multiple sclerosis
- -Sjogren's syndrome

Intervention

May be **worsened** by traditional interventional approaches

"Red herrings"

Long tail recovery from acute COVID

Intervention

Resolve without intervention

EBV Rearing its Ugly Head

Non-SARS-CoV-2 viral agents Reactivation of latent herpesviruses Positive studies: (354–359) Negative studies: (360) Positive studies: in acute COVID-19, reactivation EBV is frequent (361) (or only modest) (362, 363), as is reactivation of HHV-6, HHV-7 and CMV (361, 363, 364). Positive studies in Long COVID: (7, 365, 366)

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

Systematic review with meta-analysis of active herpesvirus infections in patients with COVID-19: Old players on the new field

Ana Banko^{1,*}, Danijela Miljanovic¹, Andja Cirkovic²

There was a 6 times higher chance for active EBV infection in patients with severe COVID-19 than in non-COVID-19 controls

¹ Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

² Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Chronic viral coinfections differentially affect the likelihood of developing long COVID

¹Division of HIV, Infectious Diseases, and Global Medicine, ²Division of Experimental Medicine, and ³Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA. ⁴Monogram Biosciences Inc., South San Francisco, California, USA. ⁵School of Pharmacy, ⁶Department of Neurology, and ⁷Division of Cardiology, UCSF, San Francisco, California, USA.

- 280 adults with prior SARS-CoV-2 infection assessed for the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status) and performed serological (blood) testing for EBV and CMV using a commercial laboratory.
- LC symptoms, such as fatigue and neurocognitive dysfunction, at a median of 4 months following initial diagnosis, were
 independently associated with serological evidence suggesting recent EBV reactivation (early antigen—diffuse IgG positivity)
 or high nuclear antigen (EBNA) IgG levels but not with ongoing EBV viremia.
- Serological evidence suggesting recent EBV reactivation (early antigen-diffuse IgG positivity) was most strongly associated with fatigue (OR = 2.12).
- LC symptoms were also observed in people with no EBV reactivation
- Underlying HIV infection was also independently associated with neurocognitive LC (OR = 2.5).
- Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR = 0.52).

- Anti-SARS-CoV-2 antibodies were analyzed in plasma and saliva from non-vaccinated ME/CFS (n=95) and healthy donors (n=110)
- Reactivation of human herpesviruses 1-6 (HSV1, HSV2, VZV, EBV, CMV, HHV6), and human endogenous retrovirus K (HERV-K) was detected by anti-viral antibody fingerprints in saliva
- At 3-6 months after mild/asymptomatic SARS-CoV-2 infection, virus specific antibodies in saliva were substantially induced signifying a strong reactivation of latent viruses (EBV, HHV6 and HERV-K) in both cohorts.
- In patients with ME/CFS, antibody responses were significantly stronger, in particular EBV-encoded nuclear antigen-1 (EBNA1) IgG were elevated in patients with ME/CFS, but not in HDs
- EBV-VCA IgG was also elevated at baseline prior to SARS-infection in patients compared to HDs

OPEN ACCESS

George Anderson, CRC Scotland & London, United Kingdom

REVIEWED BY
Nuno Sepulveda,
Warsaw University of Technology,
Poland
Sarah Jane Annesley,
La Trobe University, Australia

*CORRESPONDENCE Eirini Apostolou Eirini.Apostolou@liu.se Anders Rosén Anders.Rosen@liu.se

SPECIALTY SECTION
This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

Saliva antibody-fingerprint of reactivated latent viruses after mild/asymptomatic COVID-19 is unique in patients with myalgic-encephalomyelitis/chronic fatigue syndrome

Eirini Apostolou^{1*}, Muhammad Rizwan¹, Petros Moustardas¹, Per Sjögren^{2,3}, Bo Christer Bertilson^{2,3}, Björn Bragée^{2,3}, Olli Polo³ and Anders Rosén^{1*}

¹ Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden, ² Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden, ³ME-center, Bragée Clinics, Stockholm, Sweden

- Evidence of altered and chronically aroused anti-viral profile against latent viruses in ME/CFS
- SARS-CoV-2 infection even in its mild/asymptomatic form is a potent trigger for reactivation of latent herpesviruses (EBV, HHV6) and endogenous retroviruses (HERV-K)
- Detected by antibody fingerprints locally in the oral mucosa (saliva samples)
- This has not been shown before because the antibody elevation is not detected systemically in the circulation/plasma

Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): https://line.incidence.com/line.incidence.co

Carolyn T Bramante, John B Buse, David M Liebovitz, Jacinda M Nicklas, Michael A Puskarich, Ken Cohen, Hrishikesh K Belani,
Blake J Anderson, Jared D Huling, Christopher J Tignanelli, Jennifer L Thompson, Matthew Pullen, Esteban Lemus Wirtz, Lianne K Siegel,
Jennifer L Proper, David J Odde, Nichole R Klatt, Nancy E Sherwood, Sarah M Lindberg, Amy B Karger, Kenneth B Beckman, Spencer M Erickson,
Sarah L Fenno, Katrina M Hartman, Michael R Rose, Tanvi Mehta, Barkha Patel, Gwendolyn Griffiths, Neeta S Bhat, Thomas A Murray*,
David R Boulware*

- The goal of the trial was to see whether taking metformin, fluvoxamine, or ivermectin during the acute phase could reduce the risk of severe outcomes and/or later developing long Covid.
- All three medications have been used for many years to treat other unrelated conditions. Metformin is a medication that's been commonly used to treat diabetes.
- To be enrolled into the trial, all participants had to be experiencing Covid-19 symptoms for fewer than seven days and had had a clearly positive SARS-CoV-2 test within the three days prior.
- Participants were overweight, the median body mass index (BMI) ended up being 29.8 kg/m2.
- Those taking metformin when sick with Covid-19 were 41% less likely to have eventually developed long Covid than those taking only a placebo (6⋅3% compared to 10.4% of those who had received placebo only)
- The difference was even greater (63% lower) among those who had started taking metformin within three days of first experiencing Covid-19 symptoms
- Metformin likely worked through suppressing the acute infection / inflammation
- The study definition of Post-Covid is very different from post-Covid ME

